Pattern Recognition in Multivariate Time Series
نویسندگان
چکیده
Nowadays computer scientists are faced with fast growing and permanently evolving data, which are represented as observations made sequentially in time. A common problem in the data mining community is the recognition of recurring patterns within temporal databases or streaming data. This dissertation proposal aims at developing and investigating efficient methods for the recognition of contextual patterns in multivariate time series in different application domains based on machine learning techniques. To this end, we propose a generic three-step approach that involves (1) feature extraction to build robust learning models based on significant time series characteristics, (2) segmentation to identify internally homogeneous time intervals and change points, as well as (3) clustering and/or classification to group the time series (segments) into the sub-population to which they belong to. To support our proposed approach, we present and discuss first experiments on real-life vehicular data. Furthermore we describe a number of applications, where pattern recognition in multivariate time series is practical or rather necessary.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملOnline Recognition of Fuzzy Time Series Patterns
This article deals with the recognition of recurring multivariate time series patterns modelled sample-point-wise by parametric fuzzy sets. An efficient classification-based approach for the online recognition of incompleted developing patterns in streaming time series is being presented. Furthermore, means are introduced to enable users of the recognition system to restrict results to certain ...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملA novel grey–fuzzy–Markov and pattern recognition model for industrial accident forecasting
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011